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Microvoid formation and strain hardening in highly cross-linked polymer networks
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Using molecular dynamics simulations of a generic model, we observe strain hardening in highly cross-
linked polymer glasses under tensile deformation. We show that formation of microvoids, without bond break-
ing, constitutes the microscopic origins of strain hardening. A well-defined functional form is observed for the
void size distribution that is consistent with voids in dense equilibrium Lennard-Jones particle packings,
independent of strain. Microvoid-based strain hardening is not observed in a separate model with tetrahedral
bond angle constraints, indicating that flexible cross-linkers are the key factor in the development of strain

hardening behavior.
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Understanding the links between molecular structure and
the mechanical properties of polymeric materials is theoreti-
cally challenging, but has enormous technological impor-
tance. Interest in this field is motivated by the possible im-
plications in designing better adhesives and composite
materials [1,2]. Traditionally much effort has been devoted to
understand the molecular origins of the response of materials
comprised of linear and branched polymers to deformation
[3-5]. More recent interest has been directed toward under-
standing the underlying phenomena that govern the mechani-
cal properties of highly cross-linked polymer networks
[6-38].

Highly cross-linked polymers (HCPs) are three-
dimensional networks of covalently connected monomers,
i.e., each multifunctional monomer can form bonds with sev-
eral nearest neighbors. Examples are epoxy and vinyl-ester
thermosets, used as both high-strength adhesives and as com-
posite matrices. These materials exhibit a wide range of ex-
otic and unpredictable features, such as self-healing [7,9-11]
and pressure-sensitive adhesion [12]. However, despite ad-
vances in the development of HCPs with improved perfor-
mance, theoretical approaches in this field are relatively lim-
ited. More specifically, the complexity of the molecular-level
structure of HCPs and its direct connection to physical prop-
erties are generally poorly understood. Therefore simulations
have become a popular method [6,8,13,14] to ascertain what
determines the mechanical properties of HCPs.

One particular property of HCPs that limits their useful-
ness is their lack of ductility. For example, fully cured ep-
oxies can be strong (i.e., about 2 GPa tensile strength) but
brittle (failing at about 1% tensile strain). Therefore it is
worthwhile to investigate how one might generate a HCP
network that exhibits ductility. While current understanding
is solely attributed to the effect of cross-linker density on
ductility of a HCP network [15], we suggest a way to control
ductility by keeping this density constant. In this context,
taking a cue from materials made of uncross-linked linear
polymer chains, one route might be to design a HCP network
that undergoes some kind of structural rearrangement in the
early stages of tensile deformation that hardens the material
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and thus makes the system brittle only after a large tensile
deformation. This strain-dependent toughening of a material
is known as “strain hardening” [1,2,16,17], which is known
to play a key role in strengthening linear polymers against
tensile deformation. In general, strain hardening in polymeric
systems is associated with orientation of load-bearing cova-
lent bonds in the direction of tensile deformation [1]. How-
ever, there is a priori no allowance for such a mechanism in
HCPs. Therefore we investigate by means of extensive com-
puter simulation if a HCP network can display strain harden-
ing, and if so, what molecular-scale mechanisms give rise to
this behavior.

We have performed coarse-grained molecular dynamics
(MD) simulations to study a HCP model consisting of four-
functional monomers confined between two impenetrable
solid surfaces, one of which is fixed and the other allowed to
move. In this model, individual monomers of the system
interact with each other via a Lennard-Jones (LJ) potential
[6,18]. Results are presented in terms of LJ energy u,, LJ
length d, and mass of the individual monomer m. This gives
a characteristic time 7=\md*/u,. Values representative of
hydrocarbons are as follows: u,=30 meV, d=0.5 nm, and
7=3 ps. The unit of pressure is p,=40 MPa [19]. For the
interaction between bonded monomers we use the combina-
tion of a purely repulsive LJ potential and a quartic potential
Voond(r)= k4(y=r1)(y=r2)y*+ U, for r<1.5d, while Vioq(r)
=U, for r>1.5d [6]. Here k,=1434.3u,/d*, y=r—Ar, Ar
=1.5d, ry=-0.7411d, r,=0, and U,=67.2234u,. Tempera-
ture is controlled by coupling the system to a Langevin ther-
mostat with damping constant y=1/7 and the equation of
motion is integrated with a time step of ¢,=0.0057.

Each confining wall consists of two layers of close-
packed crystalline surfaces. The nearest-neighbor atomic
spacing in a crystalline surface is 1.209d. Initial configura-
tions are generated by randomly distributing N monomers
within the simulation box, which has linear dimensions L,,
Ly, and L, in x, y, and z directions, respectively. Interaction
between a monomer and a surface atom is the same as that of
between two monomers. The system is then subjected to a
4000 MD time step warmup stage to remove the bead-bead
overlaps using force capping. Once the fluid sample with
excluded volume is successfully generated, the next step is to
form a three-dimensional network. Based on the model po-
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FIG. 1. Engineering stress as a function of engineering strain for
a network with random bonding for a system size N=510 000.
Simulation was carried out at a constant strain rate é=2 X 10747!
and thermal energy is set to 0.3 u,/kg. Symbol (X) represents the
strain value at which the first bond breaks. Top panel shows a plot
of number of bonds as a function of strain. Inset shows a compara-
tive plot obtained with and without pressure employed on the top
surface.

tentials described above, bonds are allowed to form if the
distance between monomers and between monomer and sur-
face atoms is less than 1.3d. During this curing stage the
thermal energy is set to 1.1uy/ kg and a constant compressive
pressure, P,=3.5u,/d’, is maintained on the top wall [20].
Each monomer is allowed to form at most four bonds with
neighboring monomers and with surface atoms. Once 95% of
all possible 4N/2 bonds are formed, the system is quenched
down to a temperature 0.3u/kp also under a compressive
pressure, P, and hence forms a dense highly cross-linked
polymer glass. Tensile deformation is induced by pulling the

upper wall with a velocity Lz, giving an effective strain rate

é= LZ/ Lg, where Lg is the initial interwall separation. We
have performed simulations at three different strain rates,
ie, €=1077", é=5X107*7", and é=2X107*7". These
rates are higher than typical experimental values. However,
within the range of €’s studied here we only observe a weak
rate dependence. For our simulations, we have considered a
system size of N=510 000 within a box of linear dimensions
of L,=L,~85d and L~76d. All simulations are carried out
three times with stochastically independent initial conditions.
Results from individual runs differ from each other by a
factor of less than 1%.

We plot engineering stress, o, as a function of engineering
strain, e=(L,—L?)/L?, in Fig. 1 for a glassy state HCP net-
work. We divide this plot into four distinct regimes: an initial
regime, i.e., €< 1% stress increases rapidly with a small net-
work deformation. Above these strains (i.e., 1 % <e<15%),
stress increases nonlinearly with increasing strain without
breaking any bonds, as shown in the top panel of Fig. I.
Such behavior can be interpreted as the process during which
the system becomes harder due to the external deformation,
and thus is reminiscent of strain hardening in polymer
glasses [2]. Beyond these strain values (i.e., €>15%) an
irreversible plastic deformation occurs and the first bond
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(a) LJ fluid (b) 95% cured (¢) 5% strain

FIG. 2. (Color online) Simulation snapshots of a 85d X 85d
X 2d slab for (a) LJ fluid at p=0.93d73, (b) 95% cured sample at
p=0.94d73, and (c) after 5% strain at p=0.87d>. Here p is density
of particle packings.

breaks at around e= 15%. Finally cohesive fracture occurs at
€=30%. The inset in Fig. 1 contains a comparative plot,
which indicates that within our parameter range stress-strain
behavior is independent of whether or not any pressure is
employed [20].

Stain hardening is a well-known phenomenon in thermo-
plastic materials [2], where the work done by tensile defor-
mation is partially dissipated and partially stored in confor-
mational changes of chains and often creation of internal
surface area, in which case the phenomenon is typically re-
ferred to as crazing [21]. We find that strain hardening in our
model HCP can also be explained due to the formation of
microvoids that are uniformly distributed throughout the
sample; see Fig. 2. One might guess whenever a surface is
created, it is associated with broken bonds. However, no
bonds break in the initial stages (i.e., during strain harden-
ing) of void formation and growth.

Spontaneous void creation is known in dense LJ particle
packings [22], where it is shown that density, p=N/V with
V=(L,XL,XL,), is the key factor in determining whether
voids form. A “large” void can only form when p is smaller
than a so-called critical density, p*, and thus voids grow in
size with the reduction in p. In our simulations, p decreases
with increasing tensile deformation, consistent with increas-
ing void size with increasing €. It is important to mention
that brittle fracture will occur if there was one dominant
large void in the sample. Moreover, strain hardening is only
made possible because of the presence of many small voids
as shown in part (c) of Fig. 2. Therefore it is important to
understand what determines the distribution of void sizes.
For this purpose, we discretize our simulation domain into
V/U,0xel cubic voxels, each with volume v. In a series of
simulations, the voxel size is varied from 0.1d°<vuye
<0.54%, depending on the temperature at which void distri-
bution is observed. A box is considered to be void space if
there is no monomer inside it and also the centroid of a
monomer is farther than d/2 distance from the box boundary.
Empty boxes are clustered into voids according to the rule
that any two empty face-sharing voxels must belong to the
same void. Subsequently, void size is measured as the num-
ber of voxels in a distinct void times the volume of a single
voxel.

We show the distribution function, P(v), in Fig. 3. P(v)
appears to obey one universal master curve, independent of
strain (so long as no bonds are broken). We observe that the
data are easily described by a distribution function well-
known from LJ particle packings [23,24],
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FIG. 3. (Color online) Void size distribution at two different
strains, €, that corresponds to densities p=0.91d‘3 for €=2.5% and
p=0.87d73 for €=5%, respectively. Here P(v) is the normalized
distribution function n(v)/Z,n(v) and n(v) is the number of voids
with volume v. Dashed curve is a fit according to Eq. (1) with «
=0.32 and ¢=0.27. Inset shows the distribution function P(v) at
three different temperatures at a density p=0.874~>. The curves are
fits with (a, ) to be (0.32,0.27) for T=0.3u,/ kg, (0.36,0.60) for T
=0.6u,/kg, and (0.32,0.75) for T=0.8u,/kg, respectively. All simu-

lations are carried out at é=2X 1074771

n(v) N
>,n(v)

P(v) = vt exp(— Ep—) (1)

kT

where n(v) is the number of voids with volume v and E, is
size dependent pseudoenergy that scales as v¢. Here « and ¢
are positive fitting parameters. Fitting Eq. (1) to the data in
Fig. 3, we find @=0.32 and {=0.27. A comparison of void
sizes in the HCP to those of the LJ fluid suggests that indi-
vidual void sizes in the HCP are two orders of magnitude
larger, yet their distribution can be described by the same
empirical function. Smaller voids in the LJ particle packings
are predominantly interstitial, which grow in size with reduc-
tion in p [24]. In our HCP network we observe a similar
trend from the unnormalized data of void size, n(v), that
shows two distinct features: with increasing strain, the num-
ber of voids corresponding to a particular size increases. The
second trend is that, at larger strains, we observe large voids
that are absent at smaller strains.

Despite the long history of the statistical thermodynamics
of void space in dense particle packings [23-25], there re-
mains as yet no clear interpretation of the physical meaning
of the form and parameter values of Eq. (1). It is yet inter-
esting that the relatively large voids, as we observe in our
HCP, also obey the same functional dependence. Here we
speculate a possible origin for the two different contributions
as in Eq. (1). From Fig. 3 it is clear that the void volume is
distributed such that smaller voids are more numerous so that
the surface area can be distributed over as many voids as
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possible. Furthermore, Eq. (1) states that the distribution of
void volume has two main influences: the first factor, v=23,
corresponds to the surface energy, while the second factor is
Boltzmann-like, which measures the energetic penalty for the
creation of a void of size v from a homogeneous chunk of
material at a given p. We find this pseudoenergy, E;, scales
as v%?7 for a HCP sample in its glassy state. To further ana-
lyze the effect of temperature in our system, we have also
performed void analysis at two other temperatures, 0.6u,/ kg
and 0.8u,/kg, as shown in the inset of Fig. 3. Data for dif-
ferent temperatures are again well fit by Eq. (1) with varying
only the exponent ¢ and the exponent « remains the same
within the stochastic error bar, which suggests that E, is
somehow temperature dependent. It can be seen from the
comparative plot in the inset of Fig. 3 that the probability of
finding large voids is extremely unlikely at large tempera-
tures. This is somewhat surprising, given that one would ex-
pect to see a long tail in the distribution function at large
temperatures. This contradiction can be understood in terms
of critical density, p*, which decreases with increasing tem-
perature and thus is consistent with the absence of larger
voids, for 7>0.3u,/kg.

We also investigated void shapes using their gyration ten-
sors. Large voids were predominantly pancake-shaped with
the small axis oriented in the direction of tensile deforma-
tion. Furthermore, the lateral dimensions of the largest void
of size v=25d> prior to any bond breaking is 6d, which is
much larger than the maximum extension of the intermono-
mer bonds (i.e., 1.5d). Existence of such large voids can only
be explained by the intermonomer bond orientation. Within a
simple probabilistic argument of forming four bonds, by a
particle, out of its 12 nearest neighbor in a precured LIJ
sample, we would argue that these protovoid nucleation sites
are already encoded into the system during its curing pro-
cess. Indeed, by analyzing the bond orientation in the simu-
lation snapshots, it is apparent that almost 95% of the mono-
mers in the periphery of such voids are four-coordinated.
However, most of the bonds emanating from these peripheral
particles are oriented away from the void center. Thus in-
creasing void size with € is due to the disruption of contacts
between nonbonded monomers. This explains why we ob-
serve voids without bond breaking. This particular surface
drawing is analogous to crazing in glassy thermoplastic poly-
mers [21], which usually occurs in regions of high localized
tension and results in toughening. Moreover, upon increasing
strain above 15%, these microcracks propagate in the lateral
direction due to bond breaking near their periphery, leading
ultimately to fracture in the sample.

It is yet important to point out that the specific spatial
distribution of the monomers is only made possible because
bonds are allowed arbitrary orientation, so long as particles
do not overlap. Therefore, by imposing an additional bond
angle constraint, giving a particular geometry to the system,
the so-called strain hardening behavior should disappear. We
therefore assessed the effect of imposing tetrahedral arrange-
ments by using an additional bonding potential Vpeic(6;)
=ky( 0, 0p)%, where 6,=109.45°, k,=0.02, and 6 is the
angle between bond vectors b;; and bj;. We have conducted a
series of simulations where «, is varied from 0.001 to 0.02
and strain hardening is not observed when k,>0.005. Simi-
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FIG. 4. (Color online) Comparison of stress-strain plot for an
unconstrained (solid) and a bond-angle-constrained (dashed shifted)
system. Simulations are carried out at a constant strain rate é=2
% 10777 and thermal energy 0.3u,/kg. Arrows indicate the x axis
of a particular curve.

lar to that of an unconstrained system, here also we achieve
a 95% cure. A stress-strain curve for a constrained system is
compared to that of an unconstrained system in Fig. 4. The
constrained system does not show strain hardening behavior
and first bond break at around 2% strain [20]. However, it is
interesting to note that the two models display nearly identi-
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cal stress-strain behavior in the posthardened phase. As an-
ticipated, we observe no voids in the constrained system.
Thus we conclude that bond angle rearrangement makes a
HCP tougher by engaging a microvoid based strain harden-
ing mechanism and hence less ductile.

In conclusion, we have performed MD simulations to
study the mechanical behavior of HCPs. We investigated two
geometrically distinct model HCPs. In one case intermono-
mer bonding can have any arbitrary arrangement (uncon-
strained system) and in another case we impose tetrahedral
bonding (constrained system). In the former case we observe
a strain hardening behavior due to creation and growth of
microvoids. The void size distribution obeys a function well
known from LJ particle packings [24]. Microvoid formation
was made possible due to the random orientation of bonds.
Strain hardening makes the unconstrained network ductile.
In the latter case, the bond angle constraints prevented mi-
crovoid formation and strain hardening. Therefore we sug-
gest that a possible route toward designing ductility into the
HCP network might involve flexible cross-linkers.
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